Au delà des bilames?

jose.bico@espci.fr

benoit.roman@espci.fr

Shape Morphing

« An artist's rendering shows advanced concepts NASA envisions for an aircraft of the future. »

how do we induce shape changes?

morphing surfaces : lessons from botany

Two strategies to achieve surface morphing in biology

blooming

blooming

Gauss curvature

G > 0

$$G = 0$$

développable surfaces

Gauss curvature

G > 0

$$G = 0$$

développable surfaces

G.F. Ganp

(1777-1855)

Theorema egregium

Some Geo-metry

Gauss curvature

G > 0

G = 0

développable surfaces

« short » perimeters

blooming

curvature G modified : distances have changed !

a cylinder ... reste un cylindre

artificial petal conserving distances :

artificial petal conserving distances :

blooming : growth is more active on the edges of petal

lily blooming strategy : in-plane growth differences will change distances

everything is possible

How to use this stragegy?

How to use this stragegy?

numerical simulation (Floraform)

https://n-e-r-v-o-u-s.com/

How to use this stragegy?

Sharon et al, Nature 2002

How to use this stragegy?

plastic bag tearing.

can we mimic « differential growth » at will ?

Klein et al , Science 2007

a gel swelling with water (triggered by temperature)

Klein et al , Science 2007

a gel swelling with water (triggered by temperature)

Kim et al , Science 2012

a gel swelling with water (triggered by temperature)

programmed swelling

Huang 2017

An exemple of 4D printing

Gladman et al, Nature Material 2016

controlled non-uniform (anisotropic) swelling

hydrogel + fibres anisotropic swelling

Gladman et al, Nature Material 2016

Biomimetic 4D printing...

two strategies to achieve surface morphing differential growth/swell

3D printing ————> spatial programming

bi-layer (through thickness)

limited shapes (keep same curvature)

well known/used

change distances: no limitation !

spatial

to be developed...

Biomimetic 4D printing...

two strategies to achieve surface morphing differential growth/swell

3D printing ————> spatial programming

the same physical phenomenon for actuation : swelling / pneumatic / electrostatic/ phase change... etc (different spatial distribution)